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Abstract

A reversible mechanical system which allows of first integrals is studied. It is established that, for symmetric motions, the constants
of the asymmetric integrals are equal to zero. The form of the integrals of a reversible linear periodic system corresponding to zero
characteristic exponents and the structure of the corresponding Jordan Boxes are investigated. A theorem on the non-existence of
an additional first integral and a theorem on the structural stabilities of having a symmetric periodic motion (SPM) are proved for
a system with m symmetric and k asymmetric integrals. The dependence of the period of a SPM on the constants of the integrals
is investigated. Results of the oscillations of a quasilinear system in degenerate cases are presented. Degeneracy and the principal
resonance: bifurcation with the disappearance of the SPM and the birth of two asymmetric cycles, are investigated. A heavy rigid
body with a single fixed point is studied as the application of the results obtained. The Euler-Poisson equations are used. In the
general case, the energy integral and the geometric integral are symmetric while the angular momentum integral turns out to be
asymmetric. In the special case, when the centre of gravity of the body lies in the principal plane of the ellipsoid of inertia, all three
classical integrals become symmetric. It is ascertained here that any SPM of a body contains four zero characteristic exponents, of
which two are simple and two form a Jordan Box. In typical situation, the remaining two characteristic exponents are not equal to
zero. All of the above enables one to speak of an SPM belonging to a two-parameter family and the absence of an additional first
integral. It is established that a body also executes a pendulum motion in the case when the centre of gravity is close to the principal
plane of the ellipsoid of inertia.
© 2007 Elsevier Ltd. All rights reserved.

1. Formulation of the problem

Consider the reversible mechanical system1

(1.1)

Here M = {u, v : v = 0} is called the fixed set of system (1.1). The motion u(u0, t), v(u0, t) with an initial point u0 ∈ M
is symmetric with respect to M and the conditions2

(1.2)
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are necessary and sufficient for the existence of symmetric periodic motions (SPMs) of period 2T. It can be seen that
the SPMs form q-families where, in typical case, we have q = l − n + 1.2 The l − n quantities from the initial values
u0

1, . . . u
0
l plus the semiperiod T can serve as the parameters of this family.

A reversible mechanical system can allow of a first integral W. Then, at a level W = h(const), we have a reduced
system containing the parameter h, and the q-family of SPMs in this system will be the (q + 1)-family of SPMs in the
initial system: the case which is degenerate in the general theory becomes typical. Even such a cursory glance at the
problem shows the need to investigate the SPMs of a reversible mechanical system which allows of first integrals. A
more detailed analysis leads to the separation of the integrals into symmetric and asymmetric integrals. It clarifies the
role of each of the types of integrals and the numbers of them in the dimension of the family of SPMs, it shows the
“selectness” of one of the integrals, the energy integral, when taking SPMs as the example, it gives a negative result in
the problem of the existence of an additional first integral (including in a problem which is far from being an integrable
problem) and it solves the problem of the continuation of an SPM with respect to a parameter. The basic result is that
a typical situation has been picked out in which the conclusions are solely dictated by the number of integrals of both
types.

The formulation of this problem is not only of interest in the case of a system with a first integral but, also, in the
case when it is possible to construct a system which is approximate in a certain sense and allows of a first integral. We
also point out that the formulation of the problem is natural for a system consisting of weakly connected subsystems.

Finally, we note that the case when q = l − n + 1 is structurally stable2 in the problem of the continuation of a SPM
of a reversible mechanical system with respect to a parameter. Non-structurally stable cases of the theory have been
considered.2 However, the case of the existence of a first integral in the system has not been specially investigated.

Later, a heavy rigid body with a single fixed point is presented as an example of a reversible mechanical system in
the typical situation.

2. First integrals and symmetric solutions in a reversible mechanical system

Definition 1. The first integral W(u, v) = h (const) of system (1.1) is said to be symmetric if W(u, −v) = W(u, v),
and asymmetric if W(u, −v) = −W(u, v).

Theorem 1. If system (1.1) allows of a first integral of general form, then this integral is the sum of symmetric and
asymmetric first integrals.

Proof. It is obvious that the first integral of system (1.1) is always represented in the form of the sum of two functions

By virtue of the equations of system (1.1), on calculating the total derivative of the function W we obtain

Here, the first two terms are given by odd functions of v and the remaining two terms are given by even functions of
v, and the total derivative of the function W is identically equal to zero. Hence, the total derivatives of the functions F
and G are equal to zero. The existence of symmetric first integrals F and asymmetric first integrals G and the formula
W = F + G is proved by this.

Suppose system (1.1) allows of m symmetric integrals F�(� = 1, . . ., ri) and k asymmetric integrals
G�(� = 1, . . ., k. �
Theorem 2. For symmetric motions, the constants of the asymmetric integrals are equal to zero.

Proof. For symmetric motions, we have

and therefore

�
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Corollary. Symmetric motions separate out subspaces of dimension l + n − k.

Assertion 1. If, at a point (u*, 0) ∈ M, we have

then rank(dF1, . . ., dFm) = m and

In fact, at a point (u*, 0) ∈ M, we have

(h� and h� are the constants of the integrals). The functions F� are odd with respect to v, and therefore all ∂F�/∂vi = 0
and rank(dF1, . . ., dFm) = m. It also follows from this that Ra = k.

Assertion 2. The condition V(u*, 0) �= 0 is a necessary and sufficient condition for a symmetric solution which differs
from a constant to pass through the point (u*, 0) ∈ M.

In fact, at the point (u*, 0) ∈ M, we have U(u*, 0) �= 0, and the condition V(u*, 0) �= 0 is the necessary and sufficient
condition for the existence of an equilibrium of a reversible mechanical system. In the case when V(u*, 0) �= 0, a
symmetric solution passes through a point (u*, 0) ∈ M.

3. Integrals of a reversible linear periodic system

We now consider the reversible linear 2�-periodic system2

(3.1)

Henceforth, a plus (minus) superscript denotes 2�-periodic matrices, vectors and functions composed of even (odd)
functions.

System (3.1) is simultaneously invariant with respect to the two transforms

Hence, the system has two fixed sets

We denote the fundamental system of solutions with a unit matrix of the initial conditions by

(3.2)

(Ij is the identity j × j-matrix). The condition v−(�) = n − � then gives l − n + k periodic solutions of system (3.1)
which are symmetric with respect to the set Mx, and the condition rank u−(�) = n − � gives � similar solutions which are
symmetric with respect to the set My.2 It is obvious that some of the above-mentioned solutions can be simultaneously
symmetric with respect to both of the sets Mx and My. The number of such solutions is equal to min(�, �). Zero
characteristic exponents correspond to periodic solutions.
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By means of the substitution

(3.3)

(the vectors p±
s , q±

s are 2�-periodic with respect to t), we reduce system (3.1) to a system with constant coefficients.
Here, the sets Mx and My pass into the sets M� and M� respectively: M� = {�, �: � = 0}, M� = {�, �: � = 0}.

We will now write out the part of the reduced system which corresponds to the zero characteristic exponents. We
have

(3.4)

(3.5)

(3.6)

The next assertion follows from the transforms (3.3) and Eqs. (3.4)–(3.6).

Assertion 3. Suppose that, in the matrix S(t) (3.2),

Then, system (3.1) contains l − n + 2 min (�, �) + 2|� − �| zero characteristic exponents, including |� − �| pairs, each
of which forms a Jordan Box.

Linear integrals correspond to each Jordan Boxwhen � ≤ �

(3.7)

(3.8)

when � > �

(3.9)

(3.10)

The integral (3.7) or (3.9) also corresponds to a simple characteristic exponent.

4. The dependence of the period of a SPM on the constants of the integrals

Consider the q-family of SPMs

where a motion with a semiperiod T(h*) = � corresponds to the values h∗
1, . . . , h

∗
q.

The functions 	(h, (T/�)t), 
(h, (T/�)t) have a period equal to 2�, which is independent of the parameter h. The
same is true for their derivatives with respect to hj. We now calculate these derivatives, labelling the substitution h = h*

with a subscript asterisk:

(4.1)

The functions (∂	/∂hj)∗ and (∂
/∂hj)∗ constitute a system of q independent solutions of the system of variational
Eq. (3.1). These solutions are symmetric with respect to the set Mx.

It can be seen from equalities (4.1) that, when (∂T/∂hj)∗ = 0, we have a periodic solution and, conversely, for a
periodic solution, we have (∂T/∂hj)∗ = 0.



880 V.N. Tkhai / Journal of Applied Mathematics and Mechanics 70 (2006) 876–887

System (3.1) always has l − n periodic solutions which are symmetric with respect to the set Mx and it is therefore
necessary that l − n partial derivatives of T with respect to hj should vanish.

We will now consider the case when k asymmetric integrals exist in system (1.1)

Lemma. If an SPM with a semiperiod T passes through a point (u*, 0) ∈ M, u* = u(0), and Ra = k then (1) Ra = k
also at the point (u**, 0) ∈ M, u** = u(T), (2) k equations in system (1.2) are corollaries of the remaining equations, (3)
system (1.1) has an r-family of SPMs (r ≥ l − n + k) with a fixed period of 2π, (4) the variational system (3.1) admits
of k* ≥ k periodic solutions which are symmetric with respect to My and r* ≥ r periodic solutions which are symmetric
with respect to Mx.

Proof. We linearize the asymmetric integrals for the SPM being considered and then arrive at k integrals of the form
(3.9). According to Assertion 3, integral (3.9) corresponds to a periodic solution of the variational system (3.1), and
the solution is symmetric with respect to the set My. Since the number k of such solutions is the same at the points (u*,
0), (u**, 0) ∈ M, the magnitude of Ra is the same at these points. �

We consider Eq. (1.2) at the point (u**, 0) together with the equalities

Then, the condition Ra = k enables us to analyse a system of just n − k equations instead of system (1.2), which
contains n equations: the remaining k equations are automatically satisfied. As before, this reduced system contains l
unknowns u0

j and a parameter T but its solution now depends on no less than l − n + k parameters and T, which signifies

the existence of an r-family of SPMs (r ≥ l − n + k) with a fixed period of 2T. In system (3.1), this leads to r* ≥ r
periodic solutions which are symmetric with respect to Mx.

Theorem 3. If the reversible mechanical system (1.1) has k asymmetric first integrals, then the partial derivatives of
the period of the SPM with respect to the l − n + k parameters hj of the family are equal to zero.

Proof. According to the lemma, the system has an r-family of SPMs (r ≥ l − n + k) with a fixed period of 2T and the
linear system (3.1) possesses r* ≥ r periodic solutions which are symmetric with respect to the set Mx. We therefore
obtain from formulae (4.1) that l − n + k derivatives ∂T/∂hj are equal to zero. �

Corollary. If q = l − n + k + 1 in system (1.1), then, at the point h*, we have

that is, in the first approximation, the period of an SPM only depends on a single parameter.

Remark. For Theorem 3 to hold, it is not obligatory that symmetric integrals exist.

5. A typical situation for the SPMs of a reversible mechanical system

The natural condition rank(dG1, . . ., dGk) = k means that the system of asymmetric integrals is non-degenerate at
a point (u*, 0) ∈ M through which an SPM with a period of 2� passes. When this condition is satisfied, the lemma
guarantees the existence in Eq. (3.1) of k* ≥ k periodic solutions which are symmetric with respect to My.

The number of parameters r of a family of SPMs with a fixed period is no less than l − n + k. Suppose the vector
parameter h = (h*, h**) of a family of SPMs contains two components, and ∂T/∂h* = 0, ∂T/∂h** �= 0. According to
Theorem 3, the dimension dim h* ≥ l − n + k. Here, the strict inequality arises in the degenerate case when one of the
derivatives which is non-zero vanishes.

Suppose the parameters of a reversible mechanical system are specified. Then, degeneracy is revealed in the phase
space when an observer moves in it along a family of SPMs. Another reason for the occurrence of an atypical situation
for SPMs is a change in the parameters of the system.

The number of integrals of the form (3.9) is equal to k*. This means that, in the case when k* > k, the linear system
(3.1) has more asymmetric integrals than the overall system. This situation also has to be recognized as being atypical
of SPMs.
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Definition 2. We will say that a situation in which the number k* of integrals of the form of (3.9) is identical to the
number k of asymmetric first integrals and dim h* = l − n + k is typical for SPMs.

In the typical situation, we obtain k simple characteristic exponents corresponding to linear integrals of the form
(3.9). The remaining simple characteristic exponents correspond to integrals of the form (3.7). On the other hand, the
variational system (3.1) always his a periodic solution (	̇, 
̇) which is symmetric with respect to My, and we therefore
obtain a single Jordan box. In the general case, there can be several such boxes. According to relations (3.5), each such
box gives an increasing solution which is symmetric with respect to Mx.

We will now formulate conclusions which until now have been explicitly associated with the existence of symmetric
integrals.

Theorem 4. In the typical situation, we have

(an asterisk denotes substitution of the values u0 = u*, T = T* = �).

Proof. It follows from the lemma that, in the typical situation, Eq. (3.1) only has l − n + k periodic motions which are
symmetric with respect to the set Mx; Jordan boxes do not give such solutions. This means that Ra1 = n − k. �
Theorem 5. In the typical situation, the dimension q of the family of SPMs is equal to l − n + k + 1 and it necessarily
includes the (l − n + k)-subfamily of motions with a fixed period.

Proof. Because of the existence of SPMs, the reduced system (1.2) based on k asymmetric integrals admits of a
solution: u0 = u*, T = �. According to Theorem 4, we have Ra1 = n − k, and the implicit function theorem enables us
to find the solution of a reduced system containing l − n + k + 1 arbitrary parameters, one of which is the parameter T,
uniquely. The solution when T = T* gives a subfamily with a fixed period 2T. �

Corollary. In the typical situation, dim h** = 1.

We will now find the structurally stable cases in the theory of the continuation of an SPM with respect to a parameter
in the case of a reversible mechanical system.

Theorem 6. The following holds in the typical situation regardless of the form of the actual perturbations: (a) in a
perturbed autonomous system, a family of SPMs is continued with respect to a parameter in the cases when k = 0 and
k = 1, (b) in the case when k = 0, an (l − n)-family of SPMs is created under the action of periodic perturbations.

Proof. In the case when k = 0, we have Ra1 = n, and the question of the existence of SPMs when there are perturbations
is solved by the application of the implicit function theorem to system (1.2). In the case when k = 1, we have Ra1 = n − 1
but

from where we obtain the second part of assertion a. �
The existence of symmetric integrals has not been specifically mentioned in Theorems 4–6 above. We will assume

that system (1.1) admits of m symmetric integrals. The arbitrary constants of these integrals can then be chosen as the
parameters of the family of SPMs.

Theorem 7. In the typical situation an SPM contains l − n + 2k simple zero characteristic exponents and max{1,
m − (l − n + k)} Jordan boxes corresponding to the zero characteristic exponents.

Proof. Suppose m ≤ l − n + k, that is, the dimension of the subfamily of SPMs with a fixed period is no less than
the number of symmetric integrals. Here, in any case we have l − n + k periodic solutions which are symmetric with
respect to Mx (and l − n + k integrals of the form (3.7)) and k such solutions which are symmetric with respect to My
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(and k integrals of the form of (3.9)). In addition to this, we necessarily have a single Jordan box which corresponds to
the solution (	̇, 
̇). Hence, the number of zero characteristic exponents for the SPM is equal to l − n + 2k + 2 and there
is just a single Jordan box.

Suppose m > l − n + k. The dimension of the family of SPMs with a fixed period is equal to l − n + k and system
(3.1) only has k periodic solutions which are symmetric with respect to My. This means, firstly, that the family of
SPMs is independent of m − (l − n + k + 1) constant integrals and, secondly, that we obtain m − (l − n + k) Jordan boxes
including the box with the solution (	̇, 
̇). �

Remark. It follows from Theorem 7 that, when m = l − n + k + 1, just a single integral is picked out from among all
of the symmetric integrals and, in the examples, this is the energy integral.

The following assertion is associated with the non-existence of additional first integrals in a reversible mechanical
system.

The question of the existence of an additional integral, which differs from the energy integral, in Hamiltonian systems
was raised for the first time by Poincaré.3 The negative answer to this question is associated with the production of
isolated oscillation at a specified energy level.4 In a reversible mechanical system, this fact follows from the existence
of the typical family of SPMs (in the form of oscillations and/or rotations).

Theorem 8. If it is known that a reversible mechanical system admits of m symmetric and k asymmetric first integrals,
where m > l − n + k and the SPM of this system contains 2m − (l − n) zero characteristic exponents, then, in the typical
situation, there is no first integral in the system in addition to the known first integrals.

Proof. In the typical situation, all of the zero characteristic exponents are given by Theorem 7 and there are therefore
no other zero characteristic exponents in the system corresponding to additional first integrals. �

Corollary. In a reversible mechanical system which depends on parameters, it is necessary to seek additional first
integrals in a set of parameters of zero measure where an atypical situation is realized for the SPM.

Remark.

1◦. The condition m > l − n + k is a natural condition and is satisfied, for example, in the three-body problem (m = 1,
l = n = 2, k = 0), in the case of a heavy rigid body with a single fixed point (see Section 6), etc.

2◦. In the case when m ≤ l − n + k, the missing first integrals, if there are any, can only be symmetric.
3◦. The assertion is well known in the case of a Hamiltonian system. The Poincaré method gives an answer in the case

of systems that are close to being integrable.4

6. A heavy rigid body with a single fixed point

The motion of a heavy rigid body with a single fixed point is described by the Euler-Poisson equations

(6.1)

Here A, B and C are the principal moments of inertia of the body, P is the weight of the body, x0, y0, z0 are the
coordinates of the centre of gravity, � = (p, q, r) is the angular velocity and � = (�1, �2, �3) is the unit upwards vector.

System (6.1) admits of the classical integrals
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A characteristic feature of system (6.1) is its invariance with respect to the replacement R: (�, �, t) → (−�, �, −t).
This means the system (6.1) belongs5 to the class of reversible mechanical systems with a fixed set M = {�, �: � = 0}.
The energy and geometric integrals are symmetric with respect to M, that is,

while the angular momentum integral turns out to be asymmetric

In the case when the centre of gravity is located in the principal plane of the inertia ellipsoid (y0 = 0), system (6.1)
is also invariant with respect to the replacement

that is, it allows of a second fixed set

In this case, all the classical integrals become symmetric with respect to the fixed set My, that is,

Almost all known exact solutions of Euler’s problem, apart from permanent rotations, belong6 to the case when
y0 = 0. For example, Mlodzeyevskii pendulum motions,7 regular Grioli precessions,8 etc. are symmetric with respect
to the set My. It is found9,10 that the Grioli solutions belong to the two-parameter family of SPMs.

In the case when y0 = 0, the Euler-Poisson Eq. (6.1) can be written in the form of the reversible system (1.1) with
l = 4, n = 2 and the vectors u = (p, q, �1, �3)T , v(q, �2)T .

Theorem 9. For a body with its centre of gravity in the principal plane of the ellipsoid of inertia (y0 = 0) in the typical
situation, the SPM of system (6.1) contains two simple zero characteristic exponents, a single pair of zero characteristic
exponents which form a Jordan box, and the remaining two characteristic exponents are calculated by constructing
just a single solution of the Cauchy problem.

Proof. Of this follows from the ratio of the dimensions of the vectors u and v(l − n = 2), the existence of three
symmetric integrals, Theorem 7 and the method of calculating the characteristic exponents of a reversible system in
Ref. 9. �

Remark. In the typical case, two of the characteristic exponents are non-zero.

Theorem 10. For arbitrary specified parameters A, B and C, x0, z0 and y0 = 0 in the typical situation, the SPMs of
system (6.1) form a two-parameter family depending on h and σ, containing a subfamily of specified period which
depends on the parameter σ. This family is continued (when y0 = 0) with respect to the parameters of the problem.

Proof. This assertion follows from Theorems 5 and 6, the existence of three symmetric first integrals and taking
account of the fixed constant in the geometric integral. Then, two simple zero characteristic exponents are associated
with the angular momentum integral and the geometric integral; the integrals give the parameter 
. The other parameter
h is supplied by the energy integral and the pair of zero characteristic exponents with a Jordan box which are associated
with it. �

Remark. Theorem 1 enables us to extend the previously described observation9,10 to any SPM of the problem.

We will now analyse two remarkable SPMs in system (6.1).

6.1. Regular Grioli precessions

Grioli8 discovered regular precessions in the case of a body fixed at a point such that the conditions
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(6.2)

are satisfied. Grioli precessions have two remarkable features: (1) they arise during the motion of a dynamically
asymmetric system which is solely subjected to conditions (6.2), (2) the body precesses about an axis inclined to the
vertical axis at a certain angle �, zather than about the vertical axis.

It can be seen from the explicit formulae for Grioli solutions11 that, under the fixing conditions (6.2), we have
a mechanically unique possible motion in the form of a precession which is a SPM.9 Nevertheless, we obtain from
Theorem 10 that the given SPM belongs to an h and 
 two-parameter family and this family is continued in the case
when the first condition of (6.2) is approximately satisfied.

6.2. Mlodzeyevskii pendulum motions

These motions occur in a problem when y0 = 0 without any additional constraints on the moments of inertia and the
suspension point and contain SPMs both in the form of oscillations as well as in the form of rotations:

(6.3)

The family of SPMs (6.3) is parametrized by a natural parameter, that is, by the constant of the energy integral h. The
characteristic exponents for solution (6.3) have been calculated in Ref. 12: the typical case is obtained. Consequently,
the one-parameter Mlodzeyevskii family belongs (Theorem 10) to the two-parameter family of SPMs, containing not
only plane motions but also motions close to plane ones.

It is noteworthy that pendulum oscillations are simultaneously symmetric with respect to the two fixed sets: M and
My. The symmetry of the oscillations with respect to M enables us to apply Theorem 6 to the general case (y0 �= 0) of
problem (6.1) and to obtain the following result.

Theorem 11. In problem (6.1) with a centre of gravity close to the principal plane of the ellipsoid of inertia, a
one-parameter, h, family of SPM oscillations which are close to plane ones, always exists.

Proof. In the case when y0 �= 0 in the reversible mechanical system (6.1), we have l = n = 3, m = 2 and k = 1. In the
typical situation, according to Theorem 5 we have a one-parameter family of SPMs (the constant in the geometric
integral is fixed). �

Definition 3. The one-parameter family the energy constant h being the parameter of symmetric periodic motions,
connecting the upper and the lower equilibrium positions, is called the pendulum oscillations of a heavy rigid body
with a single fixed point.

It follows from Theorem 11 that pendulum oscillations are the most general SPMs of the problem. These motions
occur both in the case when y0 = 0 (Mlodzeyevskii oscillations) as well as in the general case. In the Euler-Poinsot case,
the above mentioned oscillations degenerate into equilibrium positions. In the remaining classical cases of integrability,
these SPMs contain six zero characteristic exponents.

Theorem 12. In the typical situation, problem (6.1) does not have a first integral in addition to the classical first
integrals.

Proof. Pendulum oscillations are the most general SPMs of a body, and the proof therefore follows from Theorem 8.
�

Remark. In the typical situation, the pendulum oscillations contain, as in the case when y0 = 0, two simple zero
characteristic exponents plus two zero characteristic exponents forming a Jordan box and two non-zero characteristic
exponents of opposite sign.

Theorem 12 is well known4 for cases which are close to integrable (also, see Refs. 13–16). The problem of the
non-existence of an additional integral for other cases remained uninvestigated. The integral found in Ref. 17 in a
closely related problem indicates the interest in this problem. It follows from the characteristic of the typical situation,
in which set of parameters additional first integrals can be sought.

Some of the results in Section 6 were announced in Ref. 18.
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7. A quasilinear system

On passing into the neighbourhood of an SPM, we obtain a problem on the investigation of a quasilinear system.
Taking a second order system as an example, below we present results on oscillations in degenerate cases, which were
obtained using of the general theoretical results presented earlier in Refs. 2,19.

Consider the family of systems

when � = 0, 1, � = −1, 0, 1.

7.1. The case when � = 0 and η = 1

When � = 0, we have a family of equilibria on the v-axis (u = 0). When � �= 0 an isolated SPM (periodic perturbations)
or an equilibrium (autonomous system) arise from the point u = 0, v = 0.

7.2. The case when � = 1 and η = −1

This case is non-structurally stable. In the generating system, we find isochronous oscillations which are symmetric
with respect to the sets M1 = {u, v : v = 0} and M2 = {u, v : u = 0}. When � �= 0, we change to variable amplitude
and angle: A, � (u = A cos �, v = A sin �). Then,

It can be seen that, for small � �= 0, the angle � changes monotonically and, in the case of an autonomous system,
we therefore obtain a family of SPMs which is close to the family of isochronous oscillations. The period of the motion
serves as the parameter of the family.

In the case of a periodic system, we make use of the amplitude equation19

the simple root A = A* of which guarantees the existence of an isolated SPM.

7.3. The case when � = η = 0

Here, the simple root u0 = u* of the amplitude equation

(7.1)

ensures19 the existence of an isolated SPM. We note that, in the case of time-dependent perturbations U1 and V1, the
cases � = 1, � = −1 and � = � = 0 reduce to one another.

7.4. The case when � = 1 and η = 0

When � = 0, we have a family of equilibria lying on the u-axis. In the case when � �= 0, the simple root of Eq. (7.1)
guarantees the existence of an SPM in the form of a cycle.
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8. Ordinary and critical points of the family of SPMs. Principal resonance

In the family of SPMs, the period T(h) depends on the parameter h, where

In the typical situation, we have dim h* = l − n + k, dim h** = 1.

Definition 4. The point h of a family of SPMs is said to be an ordinary point if dim h*(h) = l − n + k and a critical
point if dim h*(h) > l − n + k.

Theorem 6 on the structural stability of a property to have SPMs is proved for ordinary points. In the simplest case
of system (1.1), when l = n = 1, a periodic perturbation at an ordinary point always initiates the birth of a cycle which
differs from the generating SPM for the magnitude of the perturbation.20 Here, the case when � = 0 and � = 1 (Section
7) arises on passing into the neighbourhood of an SPM.

Below, we consider system (1.1) when l = n = 1, m ≥ 0, k = 0, q = 0 and show which scenario of oscillations is possible
in the case of a critical point.

It is obvious that, on passing in the phase space from one SPM to another of a family, the derivative T ′
h can vanish:

a critical point arises. In a linear system, dT(h) ≡ 0. The critical points in a non-linear system are an exception. The
rule is the existence of ordinary points.

At a critical point, solution (4.1) is periodic, and an analogue of the case when � = 1 and � = −1 (Section 7) is
realized. A principal resonance arises here under the action of 2�-periodic perturbations �U1 and �V1.

We now pass into the neighbourhood of an SPM and put

We make use of a normal form which is continuous with respect to �.21 In the complex-conjugate variables w and w̄

(the required second order system is separated out), we have

(Ckj and a0 are real coefficients). Now, after the conversion

we obtain

(8.1)

System (8.1) admits of a family of SPMs. The same holds for the system in the variables x and y, and the equality

(8.2)

must therefore be satisfied in the normal form (8.1).The system of amplitude equations19 is derived here from the
conditions

It can be seen that the system does not have roots for which sin � = 0. On the other hand, because of equality (8.2), we
find two simple roots (r0, ±�0)

(8.3)

The following result therefore holds.



V.N. Tkhai / Journal of Applied Mathematics and Mechanics 70 (2006) 876–887 887

Theorem 13. A principal resonance arises at a critical point of a family of SPMs. Bifurcation occurs here: the SPM
disappears but two asymmetric cycles (8.3) arise, and an amplitude of the oscillations is of the order of �1/2.
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